Inhibiting PTEN Protects Hippocampal Neurons against Stretch Injury by Decreasing Membrane Translocation of AMPA Receptor GluR2 Subunit
نویسندگان
چکیده
The AMPA type of glutamate receptors (AMPARs)-mediated excitotoxicity is involved in the secondary neuronal death following traumatic brain injury (TBI). But the underlying cellular and molecular mechanisms remain unclear. In this study, the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in GluR2-lacking AMPARs mediated neuronal death was investigated through an in vitro stretch injury model of neurons. It was indicated that both the mRNA and protein levels of PTEN were increased in cultured hippocampal neurons after stretch injury, which was associated with the decreasing expression of GluR2 subunits on the surface of neuronal membrane. Inhibition of PTEN activity by its inhibitor can promote the survival of neurons through preventing reduction of GluR2 on membrane. Moreover, the effect of inhibiting GluR2-lacking AMPARs was similar to PTEN suppression-mediated neuroprotective effect in stretch injury-induced neuronal death. Further evidence identified that the total GluR2 protein of neurons was not changed in all groups. So inhibition of PTEN or blockage of GluR2-lacking AMPARs may attenuate the death of hippocampal neurons post injury through decreasing the translocation of GluR2 subunit on the membrane effectively.
منابع مشابه
Hypothermia rescues hippocampal CA1 neurons and attenuates down-regulation of the AMPA receptor GluR2 subunit after forebrain ischemia.
Brief forebrain ischemia in rodents induces selective and delayed neuronal death, particularly of hippocampal CA1 pyramidal neurons. Neuronal death is preceded by down-regulation specific to CA1 of GluR2, the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit that limits Ca(2+) influx. This alteration is hypothesized to cause neurodegeneration by permitting a letha...
متن کاملPICK1 targets activated protein kinase Calpha to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2.
The PICK1 protein interacts in neurons with the AMPA-type glutamate receptor subunit 2 (GluR2) and with several other membrane receptors via its single PDZ domain. We show that PICK1 also binds in neurons and in heterologous cells to protein kinase Calpha (PKCalpha) and that the interaction is highly dependent on the activation of the kinase. The formation of PICK1-PKCalpha complexes is strongl...
متن کاملEvaluation of GluR2 subunit involvement in AMPA receptor function of neonatal rat hypoglossal motoneurons.
AMPA receptors (AMPAr) mediate fast synaptic responses to glutamate and, when they lack the GluR2 subunit, are strongly Ca2+ permeable and may increase intracellular Ca2+ levels. Because hypoglossal motoneurons possess restricted ability to buffer internal Ca2+ and are vulnerable to Ca2+ excitotoxicity, we wondered if, in these cells, any significant Ca2+ influx could be generated via AMPAr act...
متن کاملAberrant formation of glutamate receptor complexes in hippocampal neurons of mice lacking the GluR2 AMPA receptor subunit.
The number and type of receptors present at the postsynaptic membrane determine the response to the neurotransmitter released from the presynaptic terminal. Because most neurons receive multiple and distinct synaptic inputs and contain several different subtypes of receptors stimulated by the same neurotransmitter, the assembly and trafficking of receptors in neurons is a complex process involv...
متن کاملSubunit Rules Governing the Sorting of Internalized AMPA Receptors in Hippocampal Neurons
Removal of synaptic AMPA receptors is important for synaptic depression. Here, we characterize the roles of individual subunits in the inducible redistribution of AMPA receptors from the cell surface to intracellular compartments in cultured hippocampal neurons. The intracellular accumulation of GluR2 and GluR3 but not GluR1 is enhanced by AMPA, NMDA, or synaptic activity. After AMPA-induced in...
متن کامل